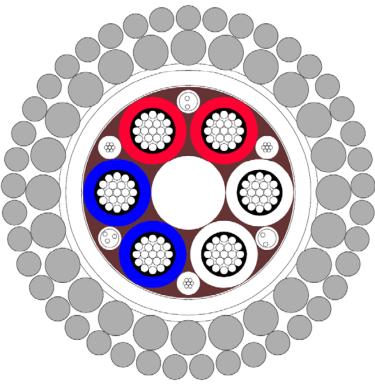


Freme

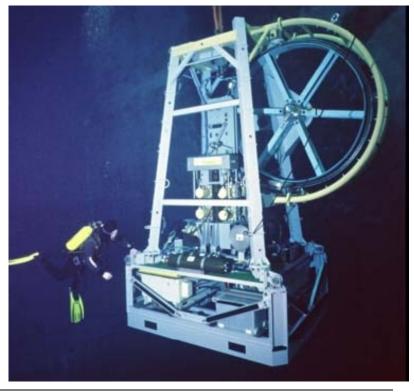
International Marine Technicians Workshop

OFEG-TECH – Bremen

7th Ocean Facilities Exchange Group 21st November 2013

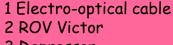

IFREMER - REM/RDT/I²M - L. Dussud

1



This presentation will focus on 2 areas :

ROV cable feedback on 18 years


PENFELD refitting and evolutions

ROV Victor system

- Main specifications
 - ✓ launched in 1995,
 - \checkmark up to 6000 m deep,
 - \checkmark up to sea state 5,
 - ✓ depressor concept,
 - ✓ usable on 5 RVs,

- 3 Depressor
- 4 Tether
- 5 Research Vessel

ROV Victor system

- Main specifications
 ✓ launched in 1995,
 - \checkmark up to 6000 m deep,
 - \checkmark up to sea state 5,
 - ✓ depressor concept,
 - \checkmark usable on 5 RV,

Đ

IFREMER - REM/RDT/I²M - L. Dussud

Cable interfaces

- The first interface is located on the depressor
 in-house unit,
 - ✓ load transfer,
 - ✓ optical connections,
 - \checkmark electrical connections,
- > The second interface is located on the drum
 - \checkmark armors clamped on the flange,
 - \checkmark connexions towards an EOSR,

Cable overview

- The cable must ensure the main functions :
 - ✓ upper working load......95 kN,
 - ✓ remote control and data.....3x 1300/1550nm,
 - ✓ power transmission.....3 phases 2kV@10.6A,
- > With the following constraints :
 - ✓ encapsulated optical fibres (FIST system),
 - ✓ 6 power conductors (13 AWG),

18 years feedback on the use of ROV cables

Cable overview 6 x 13AWG soft bare copper • 3 x 24AWG tinned copper HDPE core jacket diameter 14.10 mm nominal diameter 20.65 mm 3 single-mode FIST inner armor 24 x 1.930 mm external armor 41 x 1.345 mm

freme

Mobile and direct winch

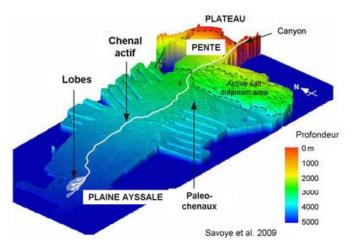
- Main characteristics :
 - ✓ 25 tonnes
 - ✓ 132 coils
 - ✓ 15 layers
 - ✓ D/d > 58
 - ✓ 150kN@1.5m/s

freme

Traction winch of the RV Pourquoi pas ?

- Main characteristics :
 - ✓ 126 coils
 - ✓ 15 layers
 - ✓ D/d > 58
 - ✓ 10 kN back tension
 - ✓ 150kN@2.0m/s

5 sheaves between the surface of the sea and the capstan

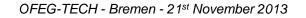


18 years feedback on the use of ROV cables

Typical mission

WACS (West Africa Cold Seeps)

Dive duration	at depth duration	Depth of the dive	Distance covered
23:28	18:40	3149 m	34.3 km
18:17	13:47	3154 m	< 1.0 km
06:57	03:07	3154 m	5.0 km
13:29	09:20	3157 m	< 1.0 km
07:17	03:07	3157 m	3.2 km
16:26	12:07	3157 m	2.5 km
16:53	14:10	3157 m	3.6 km
13:56	09:29	3102 m	7.0 km
11:07	06:38	3102 m	0.8 km
10:12	06:37	3001 m	3.0 km
16:27	15:06	689 m	4.8 km
02:14	00:00	688 m	0.0 km
05:08	23:20	4790 m	7.2 km
21:52	15:48	4946 m	6.5 km
20:20	14:42	4946 m	1.0 km
13:46	06:56	5040 m	5.0 km
	duration 23:28 18:17 06:57 13:29 07:17 16:26 16:53 13:56 11:07 10:12 16:27 02:14 05:08 21:52 20:20	durationduration23:2818:4018:1713:4706:5703:0713:2909:2007:1703:0716:2612:0716:5314:1013:5609:2911:0706:3810:1206:3716:2715:0602:1400:0005:0823:2021:5215:4820:2014:42	durationthe dive23:2818:403149 m18:1713:473154 m06:5703:073154 m13:2909:203157 m07:1703:073157 m16:2612:073157 m16:5314:103157 m13:5609:293402 m11:0706:383102 m10:1206:373001 m16:2715:06689 m02:1400:00688 m05:0823:204790 m21:5215:484946 m20:2014:424946 m


Days at sea	32
Number of dives	16
On the way	152 h
Standby du to the weather	0 h
Total duration of the dives	218 h
Average duration of the dives	14 h
Total duration at depth	173 h
Average duration at depth	11 h
Maximum depth	5040 m
Average depth	3274 m

The ROV cables

- > 18 years 4 cables 413 dives
 - ✓ 1995 2002 Schlumberger 2128 hours,
 - ✓ 2002 2010 Schlumberger 2700 hours,
 - ✓ since 2010 Schlumberger 712 hours,
 - ✓ 2005 2013 Schlumberger 1160 hours,
 ✓ since 2013 Rochester one dive for SAT,

18 years feedback on the use of ROV cables

The ROV cables

- > 18 years 4 cables 413 dives
 - ✓ 1995 2002 Schlumberger 2128 hours,

01/1999 : insulation defect on 13AWG (-1000m) 11/2001 : insulation defect on 13AWG 03/2002 : insulation defect on second 13 AWG (-3274m) 06/2002 : replacement of the first cable after 170 dives

After inspection and analysis carried out by the supplier, it was stated that the design of the cable and the materials were not the cause of these defects.

18 years feedback on the use of ROV cables

The ROV cables

- > 18 years 4 cables 413 dives
 - ✓ 2002 2010 Schlumberger 2700 hours,

10/2007 : insulation defect on 13AWG (-3950m) 10/2010 : replacement of the second cable after 150 dives

> After inspection and analysis carried out by the supplier, it was stated that the design of the cable and the materials were not the cause of these defects.

rem

18 years feedback on the use of ROV cables

The ROV cables

- 18 years 4 cables 413 dives
 - ✓ since 2010 Schlumberger 712 hours,

10/2010 : defect on external armor at 1175 m 12/2011 : breaking of a 24AWG conductor

During BOS tests, the first failure of the sample was the breaking of a 24AWG conductor after 13429 cycles.

Up to now, the supplier has not replied to our questions !

18 years feedback on the use of ROV cables

The ROV cables

- > 18 years 4 cables 413 dives
 - ✓ 2005 2013 Schlumberger 1160 hours,

10/2007 : insulation defect on 13AWG (- 4100m) 10/2013 : replacement of the cable after 60 dives

New analysis : 'No test results can jeopardize the quality of the offending insulation although some assumptions remain suspicious.'

eme

18 years feedback on the use of ROV cables

The ROV cables

> 18 years - 4 cables - 413 dives

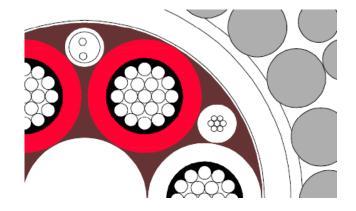
	EOM 1	EOM 2	EOM 3	EOM 4
Used during (months)	88	99	99	_
First snag after (months)	47	64	24	14
Total dives (_)	170	150	60	33
Total hours (_)	2128	2700	1160	712
Average duration of dives (h/u)	12.5	18.0	19.3	21.6
Linear cost of the cable (€/m)	26€	26€	28€	32€
Dive cost (€/u)	1 299 €	1 497 €	3 951 €	8 242 €
Hour cost (€/u)	104€	83€	204€	382€

How to explain the fall in capabilities?

18 years feedback on the use of ROV cables

The ROV cables

- What was identical ?
 - ✓ Electrical specifications were similar,
 - ✓ Optical specifications were similar too,
 - ✓ Jacket and nominal diameter were identical,
 - ✓ Mechanical tests were the same,
- > What was different ?
 - ✓ Design of conductors,
 - ✓ Recommended and Safety Working Load,


remer

18 years feedback on the use of ROV cables

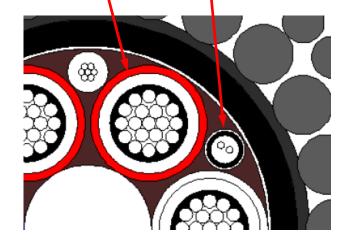
The electrical conductors

Insulation materials	EOM 1	EOM 2	EOM 3	EOM 4	EOM 5
13AWG	LDPE	LDPE	XLPE	PE+LDPE+PA	HDPE
24AWG	LDPE	EPC	EPC	EPC	HDPE
FIST	bare tube	bare tube	bare tube	PA jacketed	bare tube

EPC	Ethylene-Propylene Copolymer
LDPE	Low Density PolyEthylene
MDPE	Medium Density PolyEthylene
HDPE	High Density PolyEthylene
XLPE	Cross-Linked PolyEthylene
TR-XLPE	Tree-Retardant XLPE

eme

18 years feedback on the use of ROV cables


The electrical conductors

Insulation materials	EOM 1	EOM 2	EOM 3	EOM 4	EOM 5
13AWG	LDPE	LDPE	XLPE	PE+LDPE+PA	HDPE
24AWG	LDPE	EPC	EPC	EPC	HDPE
	hara tuba	horo tubo	hara tuha	DA io alkatada	horo tubo
FIST	bare tube	bare tube	bare tube	PA jacketed	bare tube

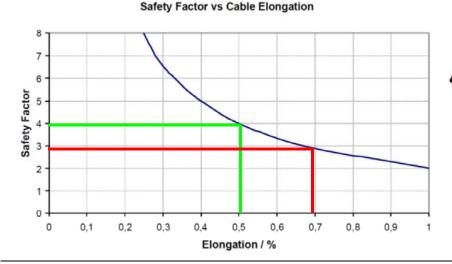
Improvements have been done to avoid insulation breakdown on the 13AWG conductors :

- EOC2 to EOC3,
- EOC3 to EOC4,

eme

The electrical conductors

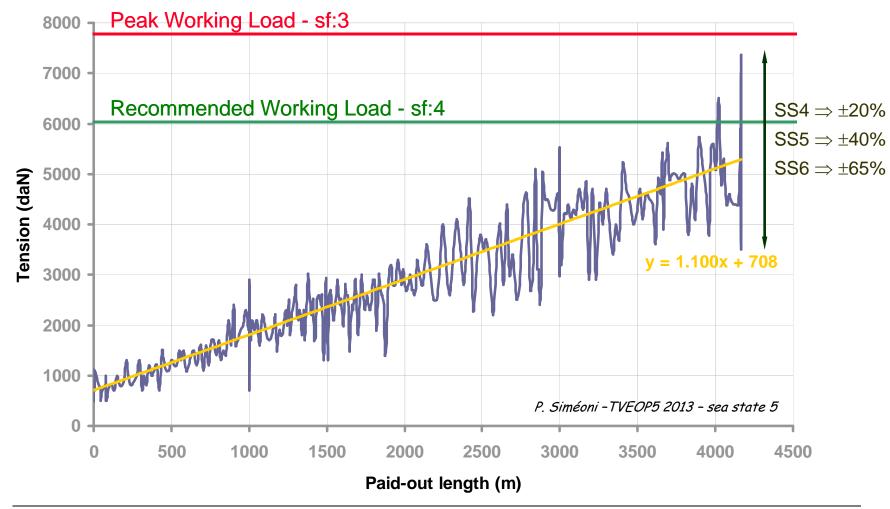
Insulation tests	EOM 1	EOM 2	EOM 3	EOM 4	EOM 5
Before laying the armors					
between 13AWG	5.0 kVdc	3.0 kVdc	5.0 kVdc	5.0 kVdc	5.0 kVdc
between 24AWG	_	1.0 kVdc	_	_	0.8 kVdc
between 13AWG and FIST	_	_	3.0 kVdc	3.0 kVdc	3.0 kVdc
between 24AWG and FIST	_	_	_	_	0.8 kVdc
After laying the armors					
between 13AWG	5.0 kVdc	4.0 kVdc	4.0 kVdc	4.0 kVdc	4.0 kVdc
between 24AWG	_	1.0 kVdc	_	_	0.5 kVdc
between 13AWG and FIST	_	_	3.0 kVdc	3.0 kVdc	3.0 kVdc
between 24AWG and FIST	_	_	_	_	0.5 kVdc
10 mn in hot water (60°C)					
100 m of 13AWG	_	_	3.0 kVdc	5.0 kVdc	5.0 kVdc
100 m of 24AWG		_	_		0.8 kVdc


Increase in the number of insulation tests !

remer

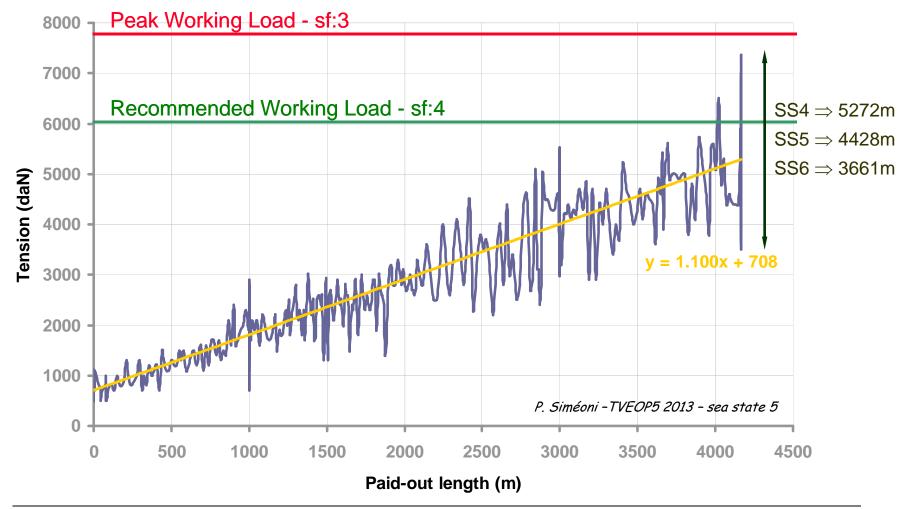
The working loads

Tension line	EOM 1	EOM 2	EOM 3	EOM 4	EOM 5
Breaking Strength	202.4 kN	220.0 kN	239.6 kN	239.6 kN	240.0 kN
Minimum Breaking Load	200.7 kN	227.5 kN	212.4 kN	219.3 kN	244.5 kN
∆ BS/MBL	-0.8%	+3.4%	-11.4%	-8.5%	+1.9%
Recommended Working Load	81 kN	81 kN	72 kN	60 kN @ 0.6%	60 kN @ 0.4%
Safety factor	2.5	2.8	3.0	3.7	4.1


'We strongly recommend a safety factor of 4. At this point the cable elongation is approx. 0.5%. Only for emergency cases (a smooth increase on tension and no snatches) a safety factor of 3 is acceptable.' *Courtesy of Rochester*

fremei

The working loads



fremei

The working loads

Cable life time required

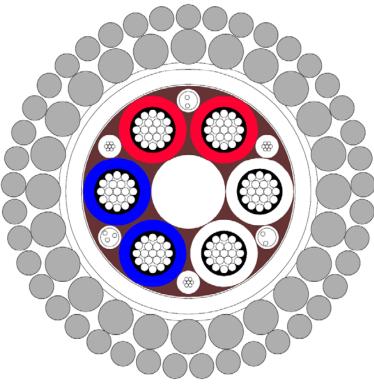
- Long stroke bending fatigue
 - ✓ 60 dives per year during 4 years
 - \checkmark On direct winch, 3 sheaves \Rightarrow 1440 cycles
 - \checkmark On the Pp?, 27 sheaves \Rightarrow 12960 cycles
- Short stroke bending fatigue
 - \checkmark 3 days at the same depth
 - ✓ 6 to 10 seconds swell period
 - ✓ that means 26 to 43 kcycles

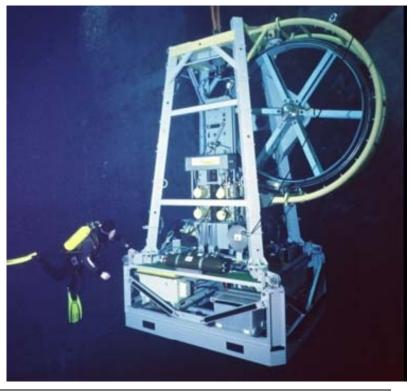
remel

Bending fatigue tests

BOS - Fatigue tests	Prototype (1993)	EOM 1 (1995)	EOM 4 (2010)	EOM 5 (2013)
	Ω machine	Ω machine	single sheave	single sheave
Number of machine cycles	16988	15000	13429	20000
Tension	95 ^{±10} kN	20 kN	60 kN	78 kN
Results - failures	o.f. and wire	13 AWG	24 AWG	null
Number of machine cycles	9151	15997	12005	20000
Tension	85 ^{±20} kN	20 kN	60 kN	78 kN
Results - failures	o.f. and wire	13 AWG	24 AWG	null
Number of machine cycles	15200	18334		20000
Tension	70 ^{±10} kN	20 kN		78 kN
Results - failures	null	steel wire		null
Number of machine cycles	19022			
Tension	70 ^{±10} kN			
Results - failures	13 AWG			

Some questions to be answered

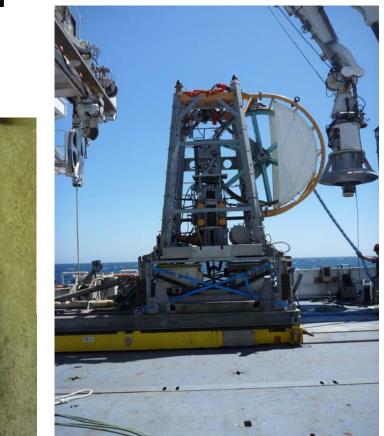

- Have we resolved insulation issues ?
 - \checkmark the future will tell !
- How do we maintain the 6000 m capacity ?
 - \checkmark should we single out athwart ship operations
 - ✓ should we rethink the specifications
- Is the life-span of our cables an acceptable standard?



This presentation will focus on 2 areas :

ROV cable feedback on 18 years

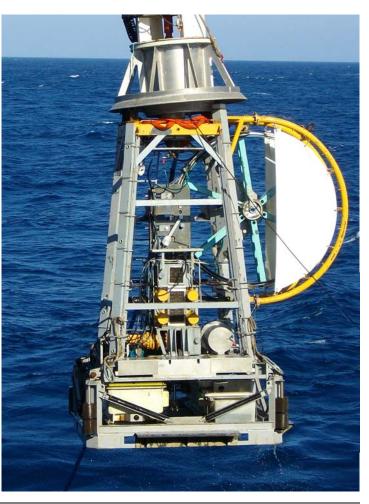
PENFELD refitting and evolutions



Refitting and evolutions of PENFELD

The penetrometer Penfeld

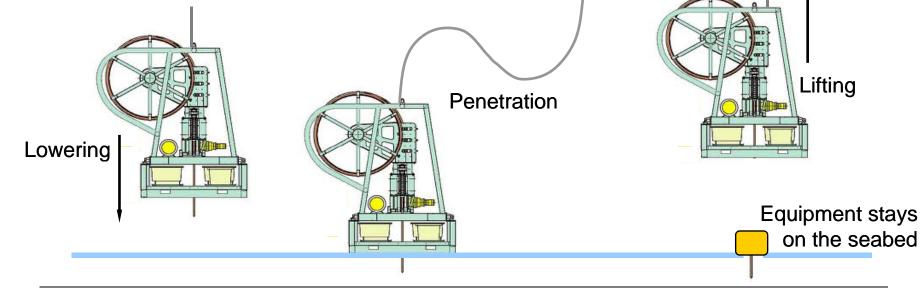
- > pushing force up to 30 kN
- > 30 meters long rod
- CPT tip or Vp tip
- self-powered
- weight in air 67 kN


Refitting and evolutions of PENFELD

Refitting and first evolution

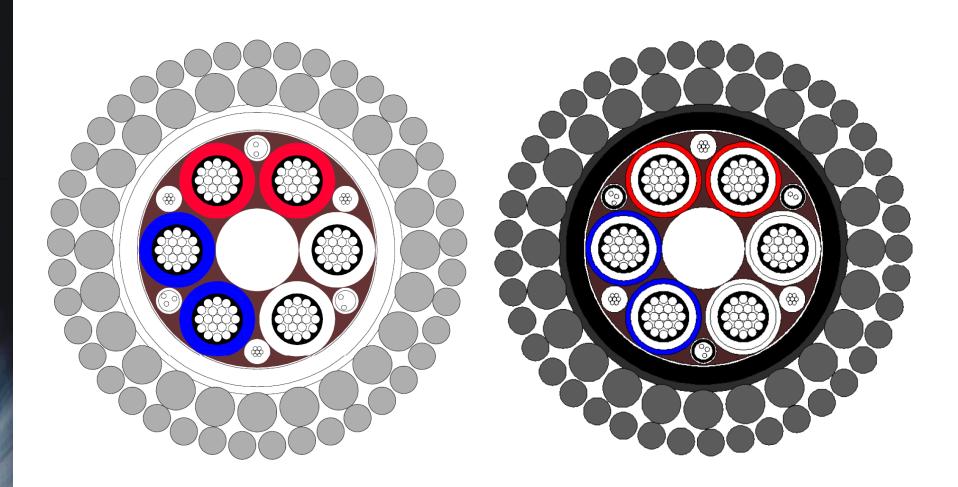
- Pushing force up to 50 kN
- > 50 meters long rod
- Weight in air 95 kN
- > Up-to-date PLC system

should be tested in september 2014



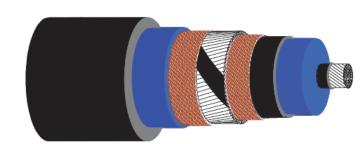
rem

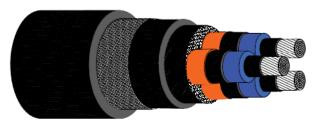
straight

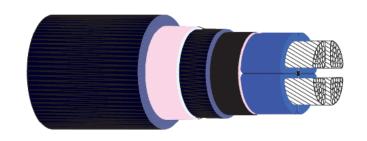

Second evolution

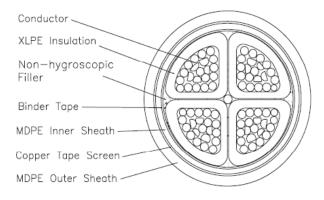
- To push into the sediment any instrumented rod as piezometers, tiltmeters, ...
- To leave on the spot the rod ready-to-use for a later connection

Thank you for your attention



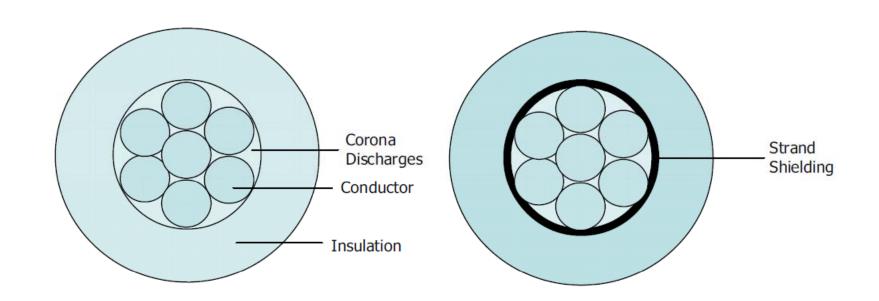

remer


Thank you for your attention



Conductor Conductor Screen XLPE Insulation Insulation Screen Semi-conductive Tape Copper Wire Screen Semi-conductive Tape Moisture Barrier PE Outer Sheath

Conductor Conductor Screen XLPE Insulation Insulation Screen Non-hygroscopic Filler Binder Tape MDPE Inner Sheath Seperation Tape MDPE Outer Sheath



IFREMER - REM/RDT/I²M - L. Dussud

fremer

Thank you for your attention

33

fremer

fremer

Thank you for your attention

